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ABSTRACT

A continuum model of crack extension is used to derive a crack propaga-
tion law for the case of constant plastic strain amplitude fatigue. The rate
of crack growth is found to be proportional to the square root of the crack
length. Integration over the total number of cycles to failure, Nf , yields
an expression of the form Nf ( y )n+l = f(Ai) , where St' is the applied
plastic strain range, and f is a function which varies r%pidly in the re-
gion of large strains, but approaches a constant as -e becomes small. The
strain hardening coefficient, n , and the fracture strain enter as material
constants. Comparison with experimental data gives good agreement for
Q z0.01 , which is consistent with the assumptions used in the theory.

iscussion is given which interprets the well-known power law
N17] const. in terms of crack propagation.
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I. INTRODUCTION

The process of fatigue failure is nqrmally divided into crack nucleation
and crack propagation stages. Forsythe, has shown that the latter process
is itself composed of at least two sequential stages which he has termed Stage
I, slip (shear) plane cracking, and Stage II, tensile mode cracking. Stage II
propagation takes place on a plane oriented 90* to the tensile stress and the
crack tip deformation leaves characteristic striations on the fracture sur-
face. Each striation has been shown to correspond to a single stress (or
strain) cycle. The study of fracture surfaces has revealed the existence of
these striations (or ripples) on a wide variety of materials and demonstrates
the generality of the Stage II process.

The Stage II mechanism has been studied by Laird and Smith•/ in aluminum
fatigued at -high stress levels. By sectioning specimens strained to various
stages of the stress cycle, it was possible to demonstrate directly the crack
tip deformation which leads to the formation of striations. The crack is ex-
tended and blunted on the tensile half-cycle, then resharpened on the com-
pressive half-cycle. The latter process restores the stress-concentration
factor necessary for repetition of the cycle. It is this mechanism which has
suggested the model used in this report.

The fraction of total life spent in Stage I propagation increases as the
applied stress (or strain) amplitude increases ._P/ Laird and Smithb! have cor-
related the number of ripples (observed optically) on the fracture surfaces of
Al and Ni with total cycles to failure and find that for lives less than 100
cycles, at least 70 per cent of life is occupied by Stage II. For lives of
- 10 cycles, at least half the life consisted of Stage II propagation. Re-
cent studies-5/ of a variety of materials have confirmed the fact that crack
g9:owth by ripple formation occupies greater than 75 per cent of life in high
strain - low cycle fatigue.

Nucleation of a propagating Stage II crack therefore requires something
less than 25 per cent of total life in low cycle fatigue. At the crack origin
the narrow spacing (- 0.1 p) of the ripples and possible obliteration due to
"banging" of the crack surfaces make it difficult to place a definite lower
limit on the nucleation time. Nevertheless, in light of the work Just cited,
it appears logical to approach the problem of low-cycle fatigue in terms of
Stage II crack propagation and a detailed analysis of the crack-tip deforma-
tion during any given cycle.

Manuscript released by the author December 1964 for publication as a RTD
Technical Report.
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The treatment to be given in this report,while based on continuum theory,
makes no pretense for elegance. Rather, it seeks to develop a simple model,

based on experimental evidence and plausible assumptions, such that the math-
ematics remains tractable and the results capable of experimental verifica-

tion. The case of fully reversed, constant plastic strain amplitude was

chosen both for its simplicity and the fact that a well-documented empirical
law exists which relates the number of cycles to failure to the applied strain

amplitude .6?/

II. CRACK GROWTH MODEL

The experii ental results of Laird and Smith'2/ on aluBminum and of

McEvily et al. on polyethylene (which also produces Stage II striations)
have been used to construct the continuum model of crack extension illustrated

in Figure 1. The crack is a two-dimensional ellipse and considered to be
located somewhere in a thick specimen such that conditions of plane strain
exist at the tip. In the fully compressed state, the crack has semi-major

axis equal to c and semi-minor axis equal to b. . As the applied strain
increases to the waximum. tensile state, plastic deformation at the crack tip
results in the creation of new surface and the crack assumes the shape with

semi-major axis equal to c + 6c (6c = RR') and semi-minor axis equal to
bm . In the derivation to follow, it is assumed that 6c << c . During the

compression half-cycle, the crack-tip strain reached during tension is con-

sidered irreversibl? such that the arc P'R' becomes P"R" in the fully

compressed state. In this manner an extension equal to Ax2  is achieved
during one complete cycle. The folding which leads to ripple formation has

been neglected in the calculation of 6x2 .

The assumption of strain irreversibility at the crack tip is an example
of the instability of ductile materials under reversed loading which has been

discussed by McClintock.2/ In fact, the model presented here can be consid-

ered a special case of McClintock's "growth by progressive deformation" case,

for which he has shown the instability to arise from either the Bauschinger

effect or low strain hardening rates.

Referring to Figure 1, the root strain, erl I is defined as

(OP'-OP)/OP , where 0 is chosen so that OR is the root radius, ro , of

the compressed crack. To relate Ax2 to this strain, consider the triangles

OP'R' and OP"R" . These right triangles are approximately equal since the

arcs P'R' and P"R" are taken to be equal and OR' at OP". Thus RR" a, PP'

and since PP' can also be expressed as OP'-OP = rocrl , the following rela-

tion holds,

2
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Figure I - C unLinuiuru Model fur Stage II Fatigue Crack Growth



S= Po rl (1)

where p is a constant of the order I which alloms Equation 1 to be written
as an exact equality.

III. DERIVATION OF CRACK GROWTH LAW

The framework of the derivation is as follows: The root strain is first
expressed in terms of the applied strain through a strain concentration fac-
tor. The strain hardening coefficient of the material, n , is introduced at
this point. Next, the crack growth iate, dc/dN = Ax2 , is integrated between
the limits No , the number of cycles to initiate a Stage II crack, and Nf
the number of cycles to fracture. The limiting values of the crack length
are co , the initial Stage II crack length, and cf , the final crack length,
for which the next quarter-cycle of strain will bring ductile fracture. The
fracture strain of the material, ef , is introduced at this point. Thus, two
material constants, n and ief , appear in the final result.

The root strain erl can be expressed in terms of the changes in the
semi-minor axis, erl = (bm1 -bo)/bo , provided 6c << c The calculation re-
lating this strain to the macroscopic applied strain is more accurately car-
ried out using logarithmic strains since the magnitudes are finite. Thus, we
define the incremental, logarithmic strain as dl = db/b = i/2(dr/r) , where
r is the root radius. The total logarithmic root strain is therefore
erl = 1/2 ln(rm/ro) at the conclusion of the tensile half-cycle.

To evaluate the strain concentration factor, we recognize, as DruckerlO/
has suggested, that this factor will vary as the crack-tip geometry changes
during the cycle. An incremental strain concentration factor, k , is there-

fore defined by di~l = kedi , where 1 is the applied logarithmic strain.
Neuberl-1 has given an expression, valid in shear, which relates the Hookian
stress concentration factor, kH , to the stress and strain concentration fac-
tors, k14L and k. , for any arbitrary nonlinear stress-strain law,

1/2 = (2)

Neuber has further stated that the relation may be extended to arbitrary
states of stress without modification. Rhee and McClintock]./1 have questioned
the validity of this procedure in the tensile case for nonhardening, ideally
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plastic materials. In the present calculation, for want of a better relation,
we shall use the Neuber expression as valid for materials in tension with fi-
nite strain hardening. Assuming that the power law, a = o0en , holds for the
materials in question, we find

1
n+l

k. .(4 2) (3)

where kH has been specified for an elliptical crack of length 2c and root
radius r . The strain hardening coefficient, n , should strictly be inter-
preted as characteristic of the material in the vicinity of the crack tip as
the tensile half-cycle is applied to it. In the sequel, because such values
are unknown, we shall take n to be the usual value determined from a tensile

stress-strain curve.

Equation 3 may now be used in the incremental expression for derl to
find the relation between the root strain and the applied strain. We have

1
n+l

1 dr r i> di

2 r ( rI

Integrating between r and rm on the left, and 0 and A , the total
plastic strain range, on the right, we obtain

1 1
n+l1 2A n+l }

rnn+l r l

or,

rl (4)

Here it has been assumed that the applied strains are large enough to neglect

the elastic component, and that the total plastic strain range corresponds to
opening the crack from its fully compressed state to its maximum opening.
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We next assume that at the conclusion of each strain cycle, the crack
is returned in its fully compressed state to a root radius, ro . Therefore,
Equation 4 represents the maximum root strain for any crack length c . Con-
verting Equation 4 to conventional strains gives,

n+l

Crl = -1,

and thus the crack growth rate is

n+1

dcd = 6  21T -1 (5)

Equation 5 predicts that the rate of krack growth in Stage II is approximately
proportional to the square root of the crack length under the conditions of
constant plastic strain amplitude. This dependence on crack length is quite
sensitive both to the way in which the incremental root strain d-erl is de-

fined and to the assumption about ro . If, for example, the root strain is
taken simply as dr/r , then dc/dN will depend linearly on c . Moreover,
if ro actually increases as the cr'. ok lengthens, then Equation 5 is altered
so that dc/dN increases more rapidly with c . For the balance of this paper
the simple model which led to Equation 5 rill be retained.

Equation 5 can be integrated between suitable limits to find the number
of cycles spent in Stage II crack growth. The integration can be expressed
in terms of a, to give,

If 1 2n+3 c - n+l I(N f- 1/4)
£(a-l)nd• - ____ (&p I/No *16

I0 n+l (n+l)n+2 P cIN6

Here No is the number of cycles to initiate a Stage II crack of lenGth co
and Nf, the total number of cycles to failure. co and cf are obtained by
substituting the values for co and cf into the expression for a . The
final crack length cf is achieved one qaLrter-cycle before complete failure
by ductile fracture. The integral on the left in Equation 6, designated by
I in the sequel, cannot be integrated in closed form except for the limiting
cases, n = 0, 1 .

To choose a reasonable value for cf , we define a critical root frac-

ture strain such that when c = cf , e-rl = rf = n+l in af . A limiting
2
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condition is given when Lhe applied strain range A~p is equal to the frac-

ture strain ef , and cf is essentially the void size. For convenience, we
take the void size to be of the order of co . One then obtains

n+l
cf = cok( ) (7)

The limits %o and af are given by

Cf= 2ef (4co +o

1n+l 11

CIO = 2i. 4 c0 N +

n+l ro

The only parameter to enter the evaluation of the integral, I , is the ratio
1o/ro ; the values of n and Ef depend on the material under test, and AEp
is given by the experimental conditions.

Because we have taken the macroscopic fracture strain 'f as the cri-
terion for determining cf , it should be noted that the larger the parameter
Co/ro , the larger the required root strain to achieve fracture, •rf If
erf were known, the best value for co/ro could then be chosen without dif-
ficulty. As it is, a choice for co/ro must be made from comparison of
Equation 6 with experimental life data in the low-cycle range. Even so, the
derivation of Equation 6 with only one adjustable parameter (8 enters only
as a constant multiplier) can be considered fortunate.

Equation 6 can be rewritten in the following form,

(Nf - 1/4 - No)(A p)n+l . (n+l)n+2 1 (9)
2 n+3 P

If we take NO to be small compared with Nf in the high strain region, an
assumption consistent with the trend of recent experimental results, we have

Nf(A p)n+l = (n+l)n+2 1 (10)
2n+7B



an equation which bears some resemblance to the Yanson-Coffin power law
relationi6n6 1 for low-cycle fatigue. Weiss!_/ has derived a similar relation
starting from somewhat different assumptions, but with a constant term on
the right-hand side. On the other hand, the right-hand side of Equation 10
is a function of AIc through the integral I , which approaches a limiting
value as A - )- 0

p

In the following section, Eqation 10 is compared with the experimental
results obtained by a number of workers for constant plastic strain, low-cycle
fatigue tests. In all cases the factor 8 was taken equal to 1, and the
integral, I , was evaluated by Simpson's Rule using an IBM 1620 automatic
computer.

IV. CCMPARISON WITH EXPERIMENT

In Figure 2, A p versus Nf curves for nickel* and three different
values of the parameter co/ro are compared with total life data for Ni taken
from the work of Coffin and Tavernelli.l_#/ In these and subsequent curves,
one-quarter cycle has been added to the value of Nf calculated from Equation
10 so that the theoretical and experimental data are effectively normalized
at the fracture strain. It is clear that the value c jro = 10 provides the
best agreement with experiment in the region Sop P 0.1 where the assumptions
leading to Equation 10 should be most applicable. This value for cJro is
also more satisfying from a physical standpoint than either of the other
values. Further consequences of this choice for co/ro will be discussed
at the end of this section.

The sensitivity of the computed life values to various choices for n
and Tf , is shown in Figures 3 and 4 for nickel. The fact that n = 0.4 is
the accepted value is quite clear. The curve for rf = 2.0 in Figure 4 would
be the result if a p at one-fourth cycle were chosen as 2Ef instead of
Ef , as has been suggested by Willner and McClintock.•_5! Clearly this choice
would not produce better agreement with the experimental data in the present
case.

* Sources of the material constants n and 7f are given in Table 1.
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NICKEL-A; f n:l.4
'Lef= 1.1

I o-(COFFIN & TAVERNELLI)

0.1 0 Co/ 1ro

10

0
0.01 00

0.001 - 0
0. 25 1I0 I 102Ni3 104 10

Figure 2 - £P versus Nf Calculated from Equation 10 for Nirkel and
Three Different Values *f co/ro . Experimental

Points Taken from Rreference 14.
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TABLE 1

MATERIAL CONSTANTS

Metal n ffe/

1100 Al o-e 1.71

Ni o.4 / 1.10

2024 Al 0.22/ 0.4

OFHC Cu 0.54-/ 1.4

a! A. M. Willner and F. A. McClintock, Paper No. 61-WA-273
Annual Meeting of ASME (1961).

b/ G. W. Geil and N. L. Carwile, NBS Circular 520, 67 (1952).
c/ J. R. Low and F. Garfalo, Proc. Soc. Exptl. Stress Anal.

4, 16 (1947).
d/ J. R. Low, "Properttesuof Metals in Materials Engineering,"

ASTM (1949).
e/ J. F. Tavernelli and L. F. Coffin, Jr., Trans. of ASME

84D) 533 (1962).
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NICKEL-A; f Coro=1.

"14- o-(COFFIN a TAVERNELLI)

0.00.0

1w.

.4<1

0 .01 00o
0

0.001 2 ,
0.25 1 10 102 103 10 10Nf

Figure 3 - versus Nf Curves for Nickel with Different Values

of the Strain Hardening Coefficient, n

(Accepted Value n = 0.4 .)

6 f NICKEL-A; n =0

o-(COFFIN a TAVERNELLI)

0.0

1w

0.001 I I ,
0.25 I 10 102 103 104

Nf
Figure 4 - A versus Nf Curves for Nickel with Different Values

of the Fracture Strain, Ef

(Accepted Value, Ef = 1.1 .)
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In Figure 5, the results of Equation i0 re compared with the experi-
mental data for 1100 Al from two sources . 5,1 Again, the choice of co/ro =
10 is consistent with the data. Figure 6 compares the theory with the data
for OFHC copper, and again shows the sensitivity of the theory to the c-ice
of n (accepted value, n = 0.5). Figure 7 compares the theory with data for
2024 Al. This was the only case in which a choice of co/ro higher than 10
was indicated. The low ductility of this alloy compared to the other three
materials may account for this fact.

An estimate of the order of magnitude of co and ro can be obtained
from experimental observations on crack growth rates in Stage II. If Equation
5 is rewritten in nondimensional form, (dc/dN)/ro may be plotted against the
ratio c/cO for various choices of co/ro . Such a plot for n = 0.4 and
Ae- = 0.02 is shown in Figure 8. If i is chosen as 1.5, the ratio cf/c0
is fixed, and the upper limit to (dc/dN)/r can be found for the three
cases shown. McEvily et al..S/ have found for OFME Cu(n = 0.5, if = 1.4)
that the ripple spacing just prior to fracture is of the order of l0-3 cm.
when , 0.02 . This information, coupled with the upper limit for
(dc/dN)/ro can be used to determine cc and ro as shown in Figure 8. The
value co = l103 cm. when co/ro = 10 is reasonable in the light of obser-
vations by Forsytheý/ and Grosskreutz]-6/ at much lower strain amplitudes where
the transition from Stage I to Stage II cracking in aluminum occurs at crack
lengths of the order of 10 p. The value for ro when co/ro = l0 seems a
bit large on first glance, but if one recalls that the original model is an
idealized elliptical crack, then ro = l0-4 cm. is not unreasonable.

Finally, the ratio of final to initial crack growth rate in Figure 8 is
38, which compares with 17 for the ratio of largest to smallest ripple spac-
ing found by McEvily et al.5/ in Cu. The theory thus predicts that somewhat
smaller striations should exist than those actually resolved by electron
microscopy of iracture surface replicas.

12



1100 Al; 0.5I100 AI; f = 1.7

o-(COFFIN 81 TAVERNELLI)

A-(BOETTNER, LAIRD 8, MCEVILY)

0.00.1 - Co/ro

0 100

0.001

0.25 I 10 102 103 104 105
Nf

Figure 5 AE A versus Nf Curves for 1100-Al with Different Values
p of co/ro . Experimental Points Taken from

References 5 and 14.

OFHC Cu;

o-(COFFIN Ek TAVERNELLI)
"A-(BOETTNER, LAIRD a MCEVILY)

n
0.1 1.0

o.o,

0.00 1 -
N 0-- 

-"

0.25 I 10 102 I03  104 &Nf

Figure 6 - t versus Nf Curves for OFHC-Cu with Diffe-ient Values

for n . (Accepted Value n = 0.5 .) Experimental Data,

References 5 and 14.
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2024 AI; - 0.2

o-(COFFIN 8 TAVERNELLI)

0.1-

"4-,,

0.01-

0 .0 0 11 10 10 4
0.25 I 10 102 103  104

Nf

Figure 7 - Iersus Nf Curves for 2024-Al with Different Values

of co/ro . Experimental Data, Reference 14.

102 Co/ro

100

10--------------------------10 n =04

IF c/dN)MAX = 10" 3cm

C0 /ro ro (cm) C0 (cm)1 3. X1 -- 4 3.- 6 X0-
/ .•10 IXlO-4 I xlO-3100 3xI0-5 3xI0-5

0.1
1 100 !03

c/co Cf/Co
(ef= 1.5)

Figure 8 - Dimren.sionless Plit or Crack Growth Rate versus Crack Length
(Reference 5) for Various Values of co/rO •

Other Parameters as Shown
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V. DISCUSSION

The good agreement between Equation 10 and the experimental data over

several decades of life lends good support to the existing experimental data
which show that low-cycle, high-strain fatigue can be viewed mainly as Stage

II crack propagation. The expression first proposed by Manson and Coffin-6n&L/

is therefore a crack propagation law. The cracks involved are never very
large, ranging from about 10 p at the outset to the order of millimeters near

the end of life.

The theory which has been described suggests that the number of cycles

to initiate a Stage II crack, No , is indeed quite small compared to Nf
until the strain range, 6-p , falls below -0.01, or Nf 5 5 x lO3 cycles.
It is below this value of Aep that the theoretical curves in Figures 2 - 7

begin to fall away from the experimental points. It is surprising that the
agreement should hold out to these relatively long lives. laird and Smith4!

have observed that only 30 per cent of the fatigue life is taken up with
ripple-propagation for Nf - 5 x 103 cycles. However, their observations
were limited to optical magnifications, and it is quite possible, in view of
later work,_/ that a mach larger percentage would have been observed at
electron-optical levels. Another possibility is that the simple model which

leads to Equation 5 is, in fact, not accurate enough, and that the crack
growth rate takes an altered form. It has already been suggested above that
some elementary changes in the definitions of darl and ro lead to a linear,
or higher power, dependence of dc/dN on c . In this case, computed values

of (Nf-No) would fall away from the actual life curves sooner than in the
present case. There is some recent evidence for a linear relation between
dc/dN and c 5/ which suggests that No becomes appreciable at larger values
of AT than those predicted here.

The sensitivity of the theory to variations in n and if (Figures 3,
4 and 6) argue that the continuum model on which the calculation is based
is realistic. To be sure, the model has a "built-in" inverse dependence be-
tween Nf and AT . However, with only one adjustable parameter) co/ro Y

it is reasonable to conclude that the agreement between Equation 10 and thc
experimental data is more than fortuitous.

It is also clear why many materials behave so nearly alike under the
same constant plastic strain conditions. Values for n are nearly all in
the range 0.2 - 0.5, and most values for Tf are of the order of unity.

Thus, the rate of clack propagation for a given ATp and c will not vary
much over 20 per cent over the range of n

15



The theory here developed is restricted to axial loading tests in which
a single crack dominates most of the te'-t life. It has been shown, however,
that materials obey a power law relation when fatigued in high-strain
torsion.l! Microscopic observation at somewhat lower strainsl_/ has shown
that torsional fatigue produces a multitude oA Stage I cracks at the surface
before Stage II propagation begins. A dilemma is posed, therefore, in the
interpretation of high-strain torsion tests. It would be extremely inter-
esting to study the fracture surfaces of such specimens to determine the
fraction of life spent in Stage II propagation.

Finally, it should be pointed out that the theory predicts (Equation 15)
that near the end of life, the ripple spacing for a given material will be
independent of the value of A-p . It would be interesting to explore this

possibility experimentally.
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